WASTE HEAT TO POWER

DOE; Pacific CHP; Northwest CHP; California Stationary Fuel Cell Collaborative

Project Financing Considerations

Wally McOuat

HMH Energy Resources, Inc. 100 Larkspur Landing Circle, Suite 213 Larkspur, CA 94939 415.925.2900

February 15, 2006

Today's Topics

- Is the project financeable?
- What are the financing options to consider?
 - Private sector projects
 - Public sector projects
- Comparison of options
 - Advantages/disadvantages of each
 - How to choose among options
- Energy Policy Act of 2005 (financial/tax incentives)

• CANNOT COVER IT ALL !!!

Some Key Issues in Financing

- Cash flows
- Creditworthiness
- Risk mitigation
- Security
- "Project financing" v. general credit

Potential Financing Alternatives For <u>Private Sector</u> Projects

- Capital outlay
- Loans
- Operating lease
- Off balance sheet financing

Capital Outlay

- If possible, easiest and least complicated. But...
- Internal competition for funding
- Opportunity costs; high hurdle rates
- Energy savings not mission of company

Loans and Leases

- Conventional loan
 - Normal banker's issues (credit condition, etc.)
 - How fits into corporate financial strategy
 - Usually only medium-term at best
- Operating leases ("true" leases)
 - Lessor retains true ownership
 - Lessor gets tax benefits (easily accomplished)
 - Credit issues still important; equipment value

"Off Balance Sheet" Approach

- Another private party invests and owns project
 - Finances, develops and operates project
 - Sells energy to the host site
- Host party has limited obligations
 - Makes site available for development
 - Agrees to buy energy from owner for long-term
- Complex, lots of issues (beyond today's scope)

Third-Party Owned/Financed with PPA Simple Approach All Equity Financing

Major Financing Decision for <u>Public Sector</u> Projects

Public financing

- Public sector provides 100%, usually tax-exempt
- Retain all benefits, all risks
- Long-term agreements few and clear

Private financing

- Private sector provides 100%, usually taxable
- Public sector buys energy outputs from Project
- Public gets benefits from discounts, rents, bonuses

Potential Public Financing Options

- Capital outlay (simple, but competition for funds)
- Bonds (likely revenue bonds, not GO's)
 - Longest term (some up to 30 years)
 - Critical mass needed (not small, lone project)
 - Issuing authority
 - Political; voter approval may be required
 - Details are beyond today's scope
 - Check with counsel and financial advisor

COP's may work better in many cases (see counsel)

Lease-Purchase Financing

- Private party provides 100% of financing
 - Form of transaction is a lease but <u>substance</u> of transaction is an installment purchase
 - Financing is 100% tax-exempt if
 - project qualifies and
 - transaction is properly structured
- Twist: non-appropriations clause often used
- Many energy projects financed this way
 - Easy, quick and inexpensive to procure and close
 - Ready cadre of financial institutions
 - Very cost-effective for many projects

Lease-Purchase Financing Simple Approach

Lease-Purchase Financing With Energy Purchase Structure

Lease-Purchase Financing

Cogeneration at UCSC (1)

Summary of Lease Purchase Financing

Advantages

- Lower cost of power than with PPA, in most cases
- Long term is possible (15 to 25 years)
- Very quick to procure & close (less than 1 month)
- Closing costs are very low (often < \$20k)</p>
- Host site retains full control over all design aspects
- Normal choices on procurement process
- Disadvantages
 - Implicitly uses up debt capacity (even if not debt legally)
 - Host site assumes full risk, for most practical purposes

Third Party Financing Options

- Operating lease (few tax benefits; not optimal)
 Few tax benefits to private owner
 Not often used for public sector energy projects
- Use of power purchase agreement (PPA)
 - Optimal use of private "tax benefits"
 - Very common approach; established precedents

Third Party Financing With PPA

- Third-party designs, constructs, finances, owns & operates the energy project
- Private operator sells power to site per long-term power purchase agreement (PPA) at fixed price (<u>x</u> ¢/kWh)
- Host site leases space ("Premises") to project's owner
- Third party gets "tax benefits" of owning project
- Utility or ESP provides supplemental & back-up power

Private Ownership with PPA Simple Approach With Lender

Private Ownership with PPA Developer Uses Lease Financing

Public Host's Major PPA Obligations

- Take and use outputs delivered by project
 - Only to extent of host loads when energy is delivered
 - Must take/use before use from any other source
 - Special PURPA rules for cogen and CHP thermal take obligation
- Pay the contract price for such energy on a timely basis
 - Starting price determined by bid process (normally)
 - Future escalation usually by formula

Developer's Major PPA Obligations

Must deliver energy as promised

- Type, condition & delivery points are specified
- Obligation may be firm (cogen thermal) or best efforts (electricity)
- Performance standards per contract
- Operate and maintain plant at no cost to public entity
 - Reimburse any extra costs incurred by host site
 - Pay all standby costs, special facilities charges, etc.

Major PPA Deal Points (Partial List)

- Various design & construction issues
- Energy pricing (initial and annual escalation)
- Demand provided by project may differ from expectations
- Various metering and billing issues
- Developer failure to perform
- Lender rights
- Host's rights to purchase project
- Developer obligations on termination or expiration
- Business aspects of force majeure
- Others (numerous)

Pros/Cons of Private Ownership

Advantages

- No capital outlay
- Transfer of most technical & operating risk
- Solely performance based (if done correctly)

Disadvantages

- In most cases, more costly electricity than tax-exempt financing
- Procurement and negotiations are not easy
- Less Host control of design (some Hosts may like this)
- Future bumps in the road may require substantial Host time
- Misnomer: income tax "benefits"

When Is PPA Approach Appropriate?

- Project not eligible for tax-exempt financing
- Public entity unwilling to take technical or performance risk of the technology
- Capital not available or site has better projects
- Cases where cost penalty of privatizing is low
- Achieve "green" objectives with no capital and minimal risk

Some "Heads Up" on PPA Deals

- Complex, despite what advocates may tell you
- Many contracts (relevant even if you're not a party)
- No deep pocket to guarantee you long-term
- Must understand where/how you can stand firm
- Parties can and do change over term of agreements
- Every "bump" in road over long-term is likely a hassle

Lots of parties/contracts...lots of perspectives....

Energy Policy Act of 2005: Assistance for Public Financing (Sample)

- Net metering required to be considered for renewable DG
- Renewable Energy Production Incentive (REPI)
 - Reinstated (had expired)
 - \$0.019/kWh (escalates annually) for first 10 years of output
 - Only available to projects owned by public sector entities
 - Solar is in preferential first tier
 - Subject to annual appropriations by Congress (mostly for renewables)
- Clean Renewable Energy Bonds (CREB's)
 - Cooperatives and public power systems
 - \$800 million; filing intent due April 26, 2006
- Too many special rules/provisions to list

Federal Tax Incentives: Private Owners

Tax credits (ETC, PTC)

- Energy tax credit (ETC)
- Production tax credit (PTC)
- Tax credits generally more valuable than depreciation
- Credits are "non-refundable" must have tax liability to use
- Energy Policy Act ('05) increased from 10% to 30% of <u>net</u> (i.e., post-rebate) eligible costs through 2007

Depreciation

- Modified accelerated cost recovery system (MACRS)
- Generally 5 year category (6 year write-off)

Energy Investment Tax Credits (ETC)

Solar Technologies Corporate: Broadly defined Individual: PV, solar water	30% through 12/31/2007 10% thereafter (corp only)	Corporate / Individual	Corporate: No cap Individual: \$2,000 cap
Geothermal	30% through 12/31/2007 10% thereafter	Corporate only	No сар
Fuel Cells	30% through 12/31/2007 Zero thereafter	Corporate / Individual	Capped at \$1000 per kW • min. 30% efficiency • min. capacity .5 kW
Micro-turbines	10% through 12/31/2007 Zero thereafter	Corporate only	Capped at \$200 per kW • min. 26% efficiency • max. capacity 2 MW

Production Tax Credit

Solar	1.9 c/kWh	5 yrs	12/31/2005
Wind	1.9 c/kWh	10 yrs	12/31/2007
Geothermal	1.9 c/kWh	10 yrs	12/31/2007
Biomass	1.9 & 0.9 c/kWh	10 yrs	12/31/2007
Landfill/MSW	0.9 c/kWh	10 yrs	12/31/2007
Small hydro	0.9 c/kWh	10 yrs	12/31/2007
Nuclear	1.9 c/kWh	8 yrs	12/31/2020
	(are other limits)		

PTC for solar expired at end of 2005

State and Local Incentives (Vary by Technology)

- Rebates (vary from State to State)
- Property tax exemptions (huge benefit)
- Sales tax exemptions
- Net metering
- Waiver of standby charges
- Expedited permitting

Various Energy Incentives Putting them Together

- Something to get you more dazed & confused: You can't get the full benefit of all the tax & rebate benefits!
- A few of the rules:
 - The Federal ETC basis is reduced by any rebate
 - The Federal MACRS basis is reduced by any rebate and 50% of the Federal ETC value
 - Can't get both ETC & PTC (30% ETC is better for PV)
 - California depreciation basis is reduced by rebates

Renewable Energy Incentives Putting Them Together – 500 kW (California!!)

California rebates; Federal ETC:	
Gross project cost (\$7/watt)	\$3,500,000
Rebate (\$2.80/watt)	(\$1,400,000)
Net Installation Cost	\$2,100,000
Federal energy tax credit (30%)	(\$630,000)
Cost After Rebate and Tax Credit	\$1,470,000
Federal Depreciation (5-yr MACRS):	
Basis (cost net of rebate)	\$2,100,000
50% ETC basis reduction	(\$315,000)
Depreciable basis	\$1,785,000 x
Taxpayer's marginal Federal tax rate	35%
Value of Federal depreciation (after 5 yrs)	\$624,750
Net Cost at Yr 6 (Initial cost - Tax benefit)	\$845,250
State Depreciation (12-yr straight line):	
Basis (cost net of rebate & state tax credit)	\$2,100,000 x
Taxpayer's marginal State tax rate	8.84%
Value of State depreciation	\$185,640
Initial cost less 12-year tax savings	\$659,610

Renewable Energy Economics

Note: Includes estimate of rebates & incentives plus cost of equity/debt Rough guide only!

Cautions Not Meant to be Unfriendly

- Engineering, operating and economic tension:
 - Not always aligned, particularly with heavy TOU tariffs
 - What is true objective of DG project?
 - Would management do project other than to save money
- Small may be beautiful but at what price?
 - Energy industry still dominated by economies of scale
 - Capital costs: may be < 1¢ per kWh effective for large plant</p>
 - Operating costs including fixed: may be < 0.7¢ per kWh</p>
 - Fuel efficiency: new plants may be < 8,000 Btu/kWh</p>
 - Delta can be 2¢–5¢/kWh (industry fights over 0.001¢/kWh)
 - Enormous economic advantage (policy issues are another topic)

Cautions Not Meant to be Unfriendly

- Few plants < 5 MW really save owners any money
 - Exception: site on very expensive secondary tariff
 - Exception: capital cost is zero or ignored
 - Problem: most sites apply no rigorous accounting
- Myth of multiple units and enhanced reliability
 - Extremely minimal enhancement (other ways to achieve)
 - Loses economies of scale (capital and operating)
- Sizing to thermal rather than electrical loads
 - May appear rational thermodynamically
 - Often leaves very expensive (20+¢/kWh) electricity on the table

Final Thoughts

- PPA pricing may be very competitive for private hosts but is quite high relative for public sector hosts in most cases
- Sizing and net metering: over 30% of days are off-peak even in afternoon (California = S/S/H)
- Diverse portfolio is a good hedging strategy against volatile electricity / natural gas prices
- Window: capitalize on rebates/tax incentives in 2006/07
- Take a long-term view of energy in general and prices

But, experts' long-term price forecasts always wrong. There's a better way: consider out-sourcing the forecast to more reliable predicting agency...

