Project Initiation: First Steps

Hank Leibowitz
Waste Heat Solutions LLC
San Ramon, CA
www.wasteheatsol.com
Waste Heat/Recovered Energy

- Primarily in the form of:
 - Combustion gases
 - Hot air
 - Hot water

- Sometimes:
 - Low pressure steam
 - Non-steam vapors (hydrocarbons)
Prerequisites

- Ample supply of waste heat
 - >200F liquid, >400F gas
 - Clean
 - Accessible

- High cost power (>$.08/kWh)
 - PPA for excess not used internally

- Continuous process (>7000 hr/yr)

- No need for additional process heat

- Upsets tolerated
Goal

- **Financial return**
 - Project all-in cost of generation < internal
 - \(C_T = C_{CR} + \text{Fuel} + C_{OPEX} \)
 - No fuel, capital recovery dominates
 - Efficiency is less important than energy utilization
 - Efficiency only matters to the extent that it reduces $/kW

- **Reduce emissions**
 - Environmental steward, “green” is good

- **Energy security**
 - Grid independence
 - Less susceptible to higher rates
Total Generation Cost

- All-in cost of generation
 - \(C_T = C_{CR} + \text{Fuel} + C_{OPEX} \)
 - \(C_{CR} = \text{Capital Recovery} = (C_{RF} \times \$/kW)/\text{UTIL} \)
 - \(C_{RF} = \text{Recovery Factor}; 10\% +/- \text{for debt}; 20\% +/- \text{for equity} \)

- Example
 - \(C_{RF} = 16\%, \text{CAPEX} = 2000/\text{kW}, \text{UTIL} = 8000 \text{ h/yr}, \text{OPEX} = .01/\text{kWh} \)
 - \(C_T = (0.16 \times 2000)/8000 + .01 \)
 - \(= .05/\text{kWh} \)
Feasibility Criteria

- Project Output ~kW
 - Characterize waste heat
 - Quantity and quality
- Cost
 - CAPEX and OPEX
- Utilization
 - Baseload vs. intermittent
- Risk
 - Source temperature too high?
 - Corrosion/deposition/erosion
 - Interface w/must run process
Project Output

- Output \(W \) = Energy \(\Delta H \) \(\times \eta_1 \)
 - *Energy* content (Btu/h or kW thermal) is *quantitative*
 - First Law
 - \(\Delta H = m \times c_p \times (T_1 - T_2) \)
 - \(T_1 = \) initial source temp, \(T_2 = \) final source temp
 - Need to find plant (thermal) efficiency, \(\eta_1 \)

- Determine *quality* of waste heat to find \(\eta_1 \)
 - *Exergy* content
 - Second Law: \(E = \Delta H \times [1-T_0(\ln T_1/T_2)/(T_1-T_2)] \)
 - Assumes \(T_0 \) (cooling water) = constant
Cycle Efficiency
ORC vs. Carnot

\[\eta_C = 48\% \]
\[\eta_1 = 24\% \]
\[\eta_2 = \frac{24}{48} = 50\% \]

Carnot

\[\eta_2 = \frac{15}{48} = 31\% \]

Source: Barber Nichols
Output Estimate

Theoretical (Carnot) eff'ly:
\[\eta_c = [1 - T_0(\ln T_1/T_2)/(T_1 - T_2)] \]

Internal eff'ly (Second Law):
\[\eta_2 = \eta_1 / \eta_c ; 30\% < \eta_2 < 50\% \]

Thermal (First Law) eff'ly:
\[\eta_1 = \eta_2 / \eta_c \]

\[W = \Delta H \times \eta_1 \]
Organic Rankine Cycle

Evaporator

Heat Source

Expander

Heated pressurized Vapor

Low pressure vapor

Condenser

Low pressure liquid

High pressure liquid

Pump

Refrigerant Loop
Working Fluid Selection

T-s diagram

T °C

Entropy kJ/°K

Steam

Pentane

Isopentane

R245fa

Isobutane

R134a
Cycle and Fluid Selection

- **Cycles**
 - ORC
 - Ammonia Water (Kalina, Absorption)

- **Working Fluids (Refrigerants)**
 - Performance (Cycle output)
 - Cost
 - Stability at elevated temperature
 - Safety
 - Reliability
 - Vacuum
 - Operator requirements
Steam vs. ORC

- **Steam**
 - >700F
 - >10 MW
 - $\eta_1 = 20-30\%$
 - Water available
 - Licensed operators
 - Complex
 - Vacuum
 - Condensate polish
 - Blow down

- **ORC**
 - <700F
 - <10 MW
 - $\eta_1 = 10-20\%$
 - No water
 - Little or no supervision
 - Closed system
 - Above atmospheric
 - No fluid treatment
 - No blow down
Equipment

- **Expander/Generator**
 - Expander most expensive by far (25-50% eqp’t)
 - Axial turbo (>5MW)
 - Radial turbo (200kW – 5MW)
 - Twin Screw (50kW – 500kW)
 - Efficiency (65% - 85%), “right to the bottom line”

- **Heat Exchangers**
 - Evaporator, preheater, condenser
 - Shell/tube for >~500kW, Plate/fin for <~200kW

- **Pump**

- **BOP** (valves, receivers, instruments, etc.)

Focus on Expander
Installed Cost

- Cap cost, $/kW ~f(kW, ORC temp)
- Installation ~50-100% equipment cost
 - Site specific: height above grade, dist between source and ORC, etc.
 - Modular vs. ‘stick built’
 - Air vs. water cooled

CAPEX vs. kW

- 200F Liq
- 400F gas
- 800F gas

$/kW

100 5000 kW
In Conclusion......

- Rules of Thumb
 - Liquid sources below 190F and gas below 400F are too cold
 - Sources below 5 MM Btu/h are too small
 - Stay away from dirty and/or corrosive gases
 - ORC beats steam below 700F and $10MW_e$
 - ORC needs base load source; 7000 h/y
 - Don’t get too excited about efficiency. Focus on $$/kW and uptime
 - After selecting the ORC refrigerant the most important item is the expander