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Presentation Outline

Overview of Waste/Reject Heat in Industrial Processes

 Refining

 Petrochemical

 Inorganic chemicals

 Process Steam

 Engine exhaust

Technologies for Waste Heat to Power Conversion 

 Commercial Technologies

 Emerging Technologies

Technology Merits 

 Conversion efficiency and effective utilization of waste heat

 Heat transfer equipment

 System integration and interfacing with industrial processes

 System reliability

 Economic values  

Selecting a Technology

Perspectives on Waste Heat Recovery and Utilization
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Energy Consumption in a Typical Refinery

Energy consumption in a typical refinery is 441,000 Btu/bbl crude, most 

of which must be rejected to the atmosphere or cooling water

 Process heaters and steam boilers (600F – 800F+) 87,000 Btu/bbl

 Process heat (200F – 400F)  40,000 Btu/bbl

 Process heat (< 200F) to cooling water Remaining

Average  US Energy Use

KBtu/bbl TrillionBtu/Year

 Crude distillation 205.3 880

 Delayed coking 166.0 101

 FCC 100.0 190

 Hydrotreating/Hydrocracking 360.0 581

 Reforming 284.0 373
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Crude Distillation Major Energy Consuming Process
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Hydrotreating and Reforming Processes
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Olefin Reactor – Complex Furnace Design
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Soda Ash Process – Complex Furnace Design
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Steam Utilization in Process Industries

 Steam is major heat carrier in refining, petrochemical, and 

pulp&paper, and food processing industries

 Steam optimization is an on-going effort with commercial 

softwares in the market 

 Cost effective topping cycle provides opportunity to improve 

steam economy

 Effective utilization of low-pressure steam can significantly 

improve the overall steam economy and plant energy efficiency 
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Current Practices of Heat Recovery

Heat recovery is generally considered in the process design optimization

 Feed/effluent heat exchangers to recover high-level heat

 Waste heat recovery boilers for high-pressure steam generation

 Fired-heater stack gas heat recovery for preheating combustion air
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Current Practices of Heat Rejection in the Process Industry

Heat rejection is generally not considered in the process design optimization

 Air-cooled heat exchangers to reject medium-level (200F to 400F) 

heat

 Cooling water to reject low-level heat (< 200 F)

– Cooling tower (1000+ lb of water consumed per million Btu heat 

rejected) 

– Once through - river, seawater, and lakes (environmental 

restrictions) 

Regional scarcity of cooling water needs to be taken into 

consideration for waste heat to power.
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Technologies for Waste Heat to Power 

Commercial Technologies

– Single Fluid Rankine Cycle

• Steam cycle

• Hydrocarbons

• Ammonia

– Binary/Mixed Fluid Cycle

• Ammonia/water absorption cycle

• Mixed-hydrocarbon cycle

Emerging Technologies

– Supercritical CO2 Brayton Cycle

– Thermoelectric conversion

Combined Cycles 
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Rankine Cycle

 Steam Cycle

– High temperatures

– Waste heat-recovery boilers commonly used

– High-pressure steam used for large compressors and air blowers

 Hydrocarbons Cycle (Organic Rankine Cycle)

– Medium to high temperatures

– Developed for geothermal applications

– Diesel engine exhaust – DOE project on ORC

 Ammonia

– Low temperatures

– Developed for ocean thermal energy

– Bottoming cycle with potential dry cooling
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Ammonia/Water Absorption Power Cycle

Historical Perspectives

 Ammonia/water absorption cycle is commercially used for heat-activated 

refrigeration

 Ammonia absorption power system proposed in 1981 by H. Sheets for 

ocean thermal energy

 First patented as Kalina cycle in 1982, followed by publication in 1984

 In 1999-2000 first commercial scale 2.0 MW Kalina cycle plant installed at a 

geothermal site in Iceland

 Further developments continue:

– Cycle configuration and integration for improved thermal efficiency 

– Development of heat/mass transfer equipment
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Ammonia/Water Absorption Power Cycle

Basic Cycle

Heat recuperation within the cycle is key to high thermodynamic efficiency
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Ammonia/Water Absorption Power Cycle

Dual-Function Cycle for Power and/or Refrigeration

 Dual-function cycle concept developed at Energy Concepts Company, LLC

 Power and refrigeration can be used interchangeably or simultaneously 
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Mixed-Hydrocarbon Cycle

Underlying Technologies Developed

 Advancement of Organic Rankine Cycle with improved thermal efficiency

 Significant literature on cycle analysis

 Industry is familiar with the technology

 Commercially available heat transfer equipment and turbine/generator

 System integration – No major technical risks
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Supercritical CO2 (SCO2) Brayton Cycle

Being Developed for Nuclear Plants

 SCO2 Brayton cycle achieves high thermal 

efficiency

 Development of heat transfer equipment

– Internal heat recuperation crucial for achieving high 

thermal efficiency

– Compact narrow flow passage heat exchangers 

 Turbine/Compressor 

– Single-stage and two-stage centrifugal compressors

– Six-stage axial flow turbine

 For waste heat to power applications, combined 

cycle may have advantages
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Supercritical CO2 (SCO2) Brayton Cycle for Nuclear Reactor

T-S Diagram

Waste heat to power
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Supercritical CO2 (SCO2) Brayton Cycle for Nuclear Reactor

Flow Schematic

Na-Loop replaced with hot-oil loop 

for waste heat to power cycle
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Thermo-Electric Generation System

 Thermo-Electric Generator (TEG) device known for some time for 

TEG cooling (example – thermocouples)

 Development focused on material-pair with high figure-of-merit  

 DOE funded project to evaluate technical/economic viability of 

TEG system

Coolant

Heat Source Hot-Side Heat Exchanger

Cold-Side Heat Exchanger

TEG

Power Control
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Thermo-Electric Generation System

Figure of Merit

ZT = (a2 s / l ) T
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Combined Cycle

 An integrated combined cycle with advantageous features of two 

different cycles can be more economical than individual cycles 

 Combined power and refrigeration can significantly improve the 

overall economics

For an example: SCO2 and ammonia/water or organic cycle

Advantages:

• Cycle configuration

• Cost-effective interfacing with heat source

• Dry cooling

• Mitigating material issue

• Refrigeration
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Technology Merits



24

Criteria-1

Conversion Efficiency and Effective Utilization of Waste Heat

Cooling Media
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Conversion Efficiency and Effective Utilization of Waste Heat

Understanding Cycle Efficiency – 1st Law of Thermodynamics

Commercial Power Plants

Commonly thermal efficiency is based  on recovered waste heat 

Thermal efficiency should be based on total recoverable waste heat

SourceHeat 

Work Netc
SourePrimary  ofContent Heat 

Work Netc

RecoveredHeat 

Work NetWH

Heat eRecoverabl Total

Work NetWH
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Conversion Efficiency and Effective Utilization of Waste Heat

Understanding Cycle Efficiency – 2nd Law of Thermodynamics

Carnot Efficiency

Cornot Efficiency for Waste heat to Power 

Thermal efficiency should be based on total recoverable waste heat

1
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Conversion Efficiency and Effective Utilization of Waste Heat

Impact of Heat Transfer Performance on Cycle Efficiency

Cooling Media
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 Waste heat source to the cycle

– Corrosion and material considerations

– Fouling: severity, mitigation, monitoring, cleaning

 Internal heat transfer equipment

– Numbers and complexity

– Design constraints and impact on cycle performance

 Heat rejection exchanger

– Availability of cooling water or make-up water for evaporative 

coolers/condenser

– Dry cooling

Criteria-2

Heat Transfer Equipment
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 Interfacing of waste heat source to the cycle:  space, accessibility, 

interfacing piping, impact on the process unit, need for a closed loop to 

transfer waste heat to power cycle

 Heat rejection:  Integrated with the plant cooling system or independent 

system, availability of make-up water or dry cooling

 Power system integration and controls

 Maintenance requirements that would impact system integration 

 Availability of Space for the Power System

Criteria-3

System integration and interfacing with industrial processes



30

 Validated performance of individual components

 Validated performance of the prototype power system

 Dynamic performance of the power system that may impact industrial 

processes

 Impact of fouling of waste heat recovery heat transfer equipment on the 

system performance

 Inherent safety measures for ammonia and hydrocarbon systems 

Criteria-4

System reliability
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 Cost of electricity (COE): present and projected COE over the life of the 

waste heat to power system

 Combined power and refrigeration: value of refrigeration on energy 

efficiency as well as improved productivity

 Productivity improvements 

 Environmental benefits

Criteria-5

Economic values
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Step 1: Determine incentives:  Just COE or end-use benefits (refrigeration, operating 

rotating equipment, expanding capacity)

Step 2: Characterize the waste heat source and evaluate technical issues of interfacing 

with the power system

Step 3: Use technology merit criteria to screen different power cycles, including 

combined cycles,  and down select to two (may be three) options 

Step 4: Perform a conceptual design to identify major technical issues, and possibly 

down select to one option

Step 5: Preliminary design with planning-stage cost estimates based on budgetary 

quotes of components and subsystems

Step 6: Decision to go forward with the installation of the waste heat to power system

Selecting a Technology
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Perspectives

Waste heat – a hidden source of energy

 Significant loss of thermal energy from furnace/fired heater/boiler stack 

gases and calciners & driers

 Significant low-level (150F to 250F) energy is lost to cooling towers in the 

form of latent heat from overhead condensers in distillation

 Low pressure steam a major source of waste heat 

 Lack of incentives, such as GHG emission credits

 Lack of design/economic tools to evaluate effective utilization of recovered 

process waste heat in High-Value applications – power, refrigeration, heat 

pumping

 Process heat recovery must be applied to existing plants, with uncertain  

costs of retrofitting

 Major technical barriers of fouling  and corrosion of waste heat sources

 Scarcity of fresh water in some regions for heat rejection


