

... for a brighter future

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Waste Heat to Power

Selecting a Technology

C.B. Panchal

Argonne National Laboratory Chemical Engineer Phone: 443 812 5930 <u>cpanchal@anl.gov</u>

Houston, TX

September 25, 2007

Presentation Outline

Overview of Waste/Reject Heat in Industrial Processes

- > Refining
- Petrochemical
- Inorganic chemicals
- Process Steam
- Engine exhaust

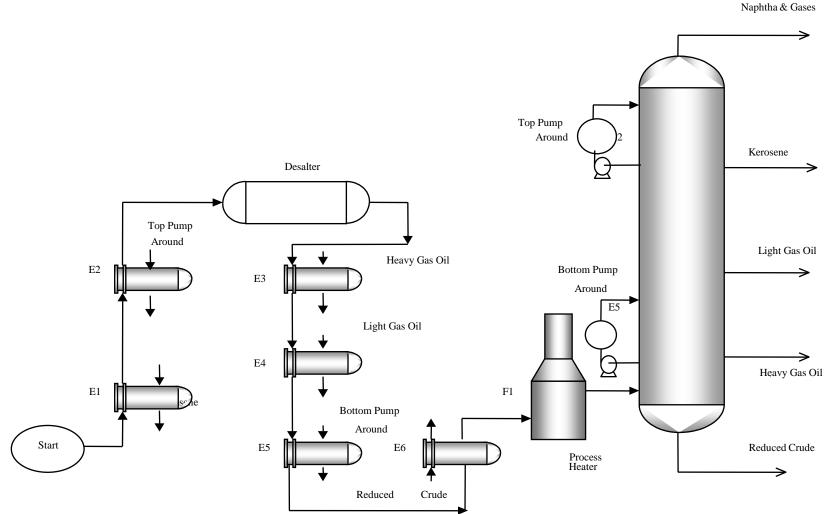
Technologies for Waste Heat to Power Conversion

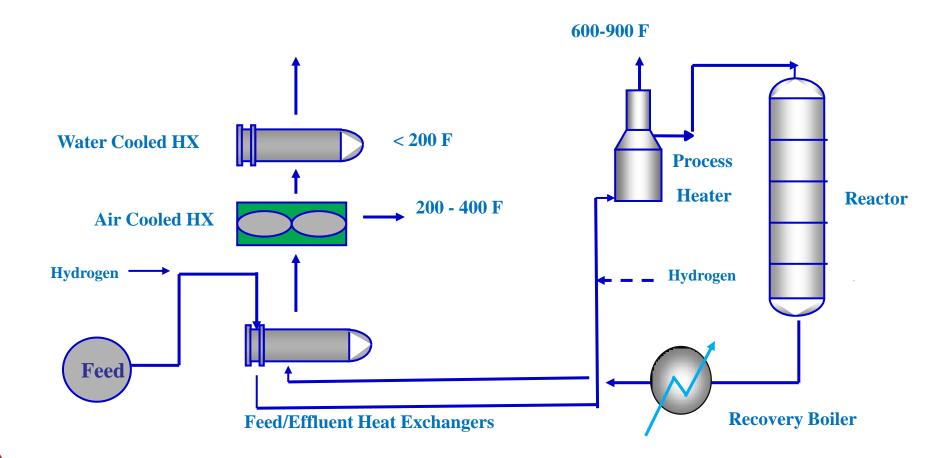
- Commercial Technologies
- Emerging Technologies

Technology Merits

- > Conversion efficiency and effective utilization of waste heat
- Heat transfer equipment
- System integration and interfacing with industrial processes
- System reliability
- Economic values

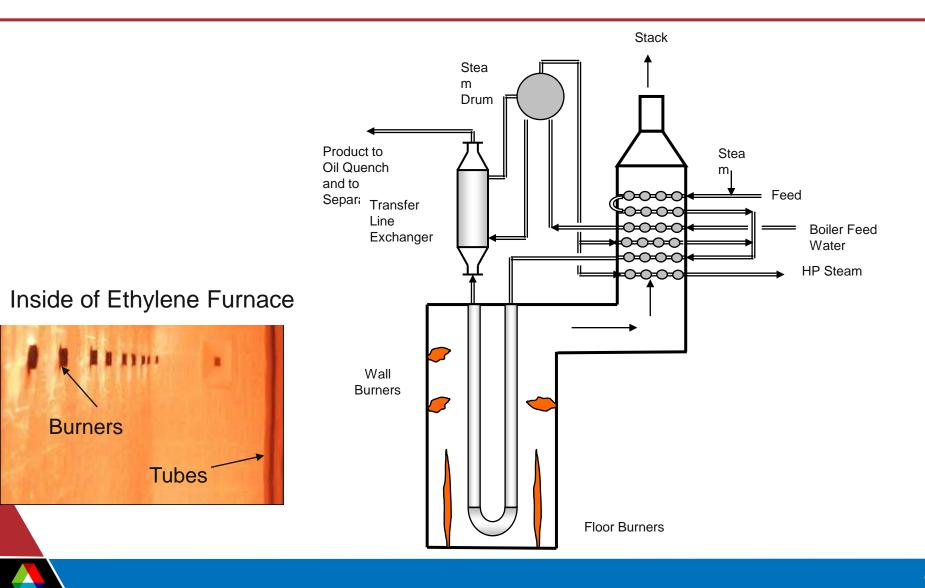
Selecting a Technology


Perspectives on Waste Heat Recovery and Utilization

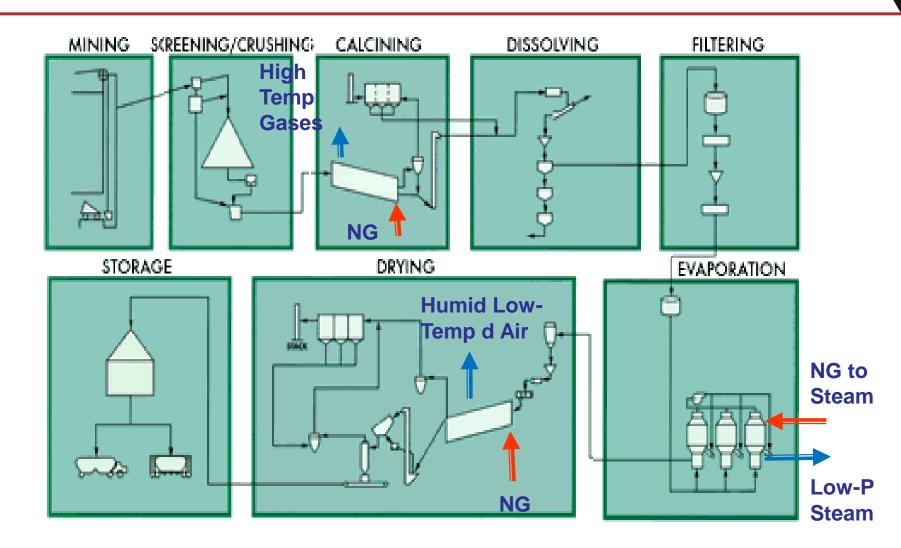

Energy Consumption in a Typical Refinery

Energy consumption in a typic	cal refinery is 441,000 B	tu/bbl crude, most
of which must be rejected to t	he atmosphere or coolir	ng water
Process heaters and steam boilers (600F – 800F+)		87,000 Btu/bbl
Process heat (200F – 400F)		40,000 Btu/bbl
Process heat (< 200F) to cooling water		Remaining
	Average	US Energy Use
	KBtu/bbl	TrillionBtu/Year
Crude distillation	205.3	880
Delayed coking	166.0	101
> FCC	100.0	190
Hydrotreating/Hydrocracking	360.0	581
Reforming	284.0	373

Crude Distillation Major Energy Consuming Process



Hydrotreating and Reforming Processes



5

Olefin Reactor – Complex Furnace Design

Soda Ash Process – Complex Furnace Design

Steam Utilization in Process Industries

- Steam is major heat carrier in refining, petrochemical, and pulp&paper, and food processing industries
- Steam optimization is an on-going effort with commercial softwares in the market
- Cost effective topping cycle provides opportunity to improve steam economy
- Effective utilization of low-pressure steam can significantly
 - improve the overall steam economy and plant energy efficiency

Current Practices of Heat Recovery

Heat recovery is generally considered in the process design optimization

- Feed/effluent heat exchangers to recover high-level heat
- Waste heat recovery boilers for high-pressure steam generation
- Fired-heater stack gas heat recovery for preheating combustion air

Current Practices of Heat Rejection in the Process Industry

Heat rejection is generally not considered in the process design optimization

- Air-cooled heat exchangers to reject medium-level (200F to 400F) heat
- Cooling water to reject low-level heat (< 200 F)</p>
 - Cooling tower (1000+ lb of water consumed per million Btu heat rejected)
 - Once through river, seawater, and lakes (environmental restrictions)

Regional scarcity of cooling water needs to be taken into consideration for waste heat to power.

Technologies for Waste Heat to Power

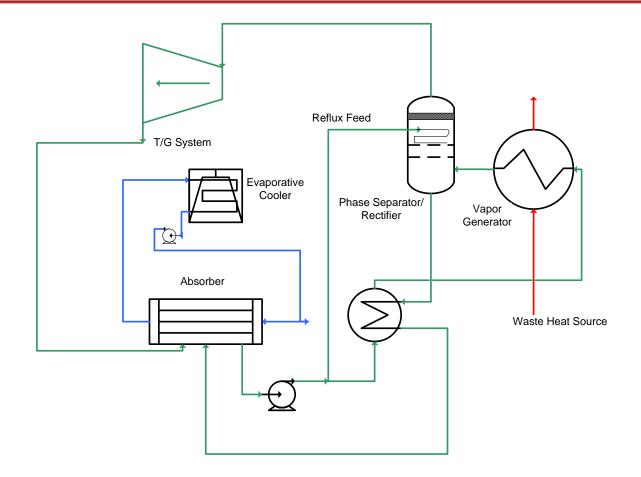
Commercial Technologies

- Single Fluid Rankine Cycle
 - Steam cycle
 - Hydrocarbons
 - Ammonia
- Binary/Mixed Fluid Cycle
 - Ammonia/water absorption cycle
 - Mixed-hydrocarbon cycle

Emerging Technologies

- Supercritical CO2 Brayton Cycle
- Thermoelectric conversion

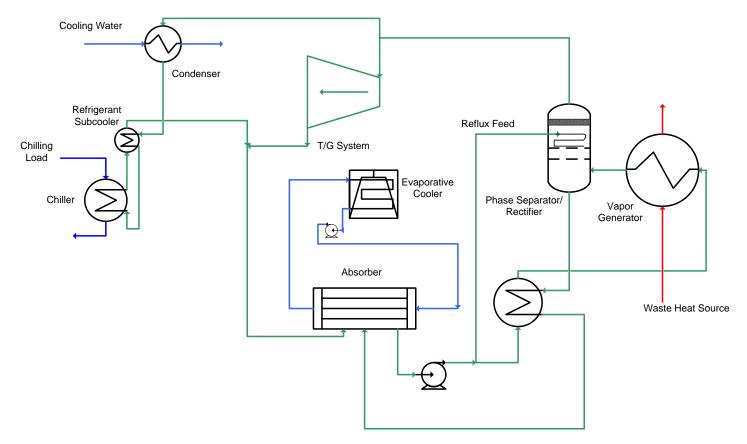
Combined Cycles


Rankine Cycle

- Steam Cycle
 - High temperatures
 - Waste heat-recovery boilers commonly used
 - High-pressure steam used for large compressors and air blowers
- Hydrocarbons Cycle (Organic Rankine Cycle)
 - Medium to high temperatures
 - Developed for geothermal applications
 - Diesel engine exhaust DOE project on ORC
- Ammonia
 - Low temperatures
 - Developed for ocean thermal energy
 - Bottoming cycle with potential dry cooling

Ammonia/Water Absorption Power Cycle Historical Perspectives

- Ammonia/water absorption cycle is commercially used for heat-activated refrigeration
- Ammonia absorption power system proposed in 1981 by H. Sheets for ocean thermal energy
- First patented as Kalina cycle in 1982, followed by publication in 1984
- In 1999-2000 first commercial scale 2.0 MW Kalina cycle plant installed at a geothermal site in Iceland
- Further developments continue:
 - Cycle configuration and integration for improved thermal efficiency
 - Development of heat/mass transfer equipment

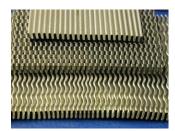

Ammonia/Water Absorption Power Cycle Basic Cycle

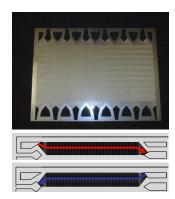
Heat recuperation within the cycle is key to high thermodynamic efficiency

Ammonia/Water Absorption Power Cycle

Dual-Function Cycle for Power and/or Refrigeration

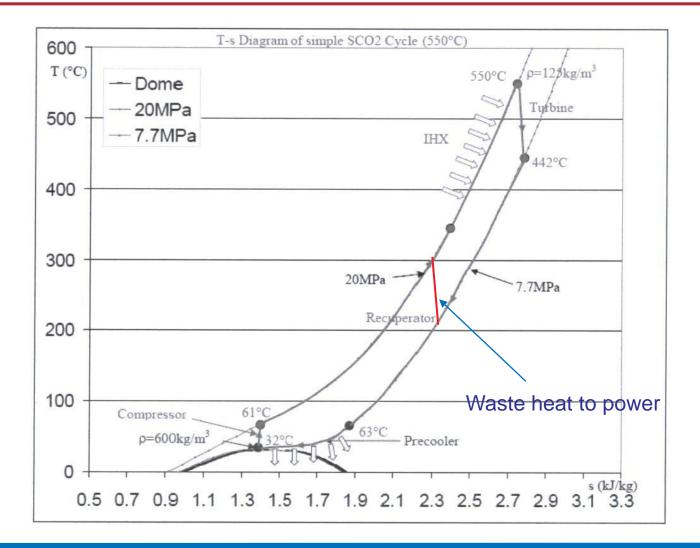
- Dual-function cycle concept developed at Energy Concepts Company, LLC
- Power and refrigeration can be used interchangeably or simultaneously

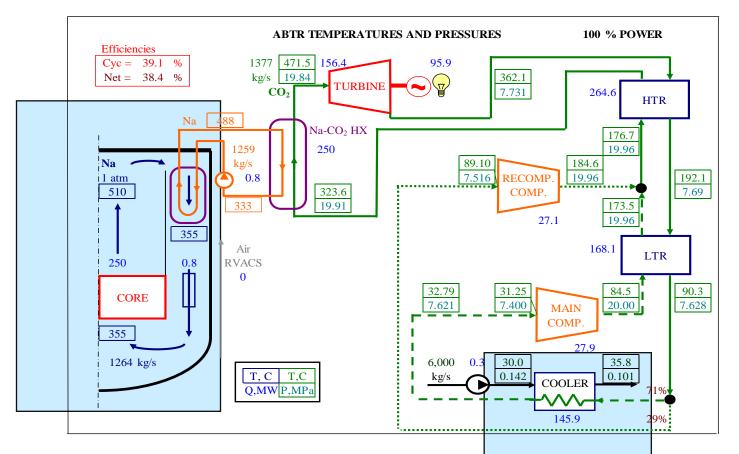

- Advancement of Organic Rankine Cycle with improved thermal efficiency
- Significant literature on cycle analysis
- Industry is familiar with the technology
- **Commercially available heat transfer equipment and turbine/generator**
- System integration No major technical risks



Supercritical CO2 (SCO2) Brayton Cycle

Being Developed for Nuclear Plants

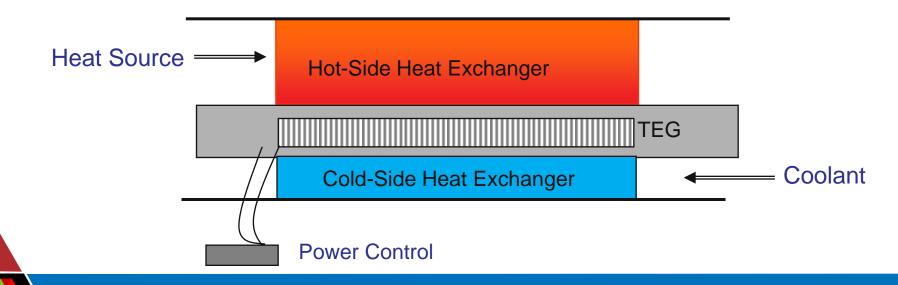

- SCO2 Brayton cycle achieves high thermal efficiency
- Development of heat transfer equipment
 - Internal heat recuperation crucial for achieving high thermal efficiency
 - Compact narrow flow passage heat exchangers
- Turbine/Compressor
 - Single-stage and two-stage centrifugal compressors
 - Six-stage axial flow turbine
- For waste heat to power applications, combined cycle may have advantages



Supercritical CO2 (SCO2) Brayton Cycle for Nuclear Reactor T-S Diagram

Supercritical CO2 (SCO2) Brayton Cycle for Nuclear Reactor

Flow Schematic



Na-Loop replaced with hot-oil loop for waste heat to power cycle

Low-temp bottoming cycle or Absorption refrigeration cycle

Thermo-Electric Generation System

- Thermo-Electric Generator (TEG) device known for some time for TEG cooling (example – thermocouples)
- Development focused on material-pair with high figure-of-merit
- DOE funded project to evaluate technical/economic viability of TEG system

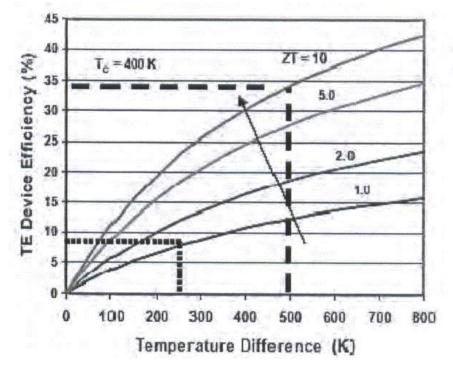

Thermo-Electric Generation System

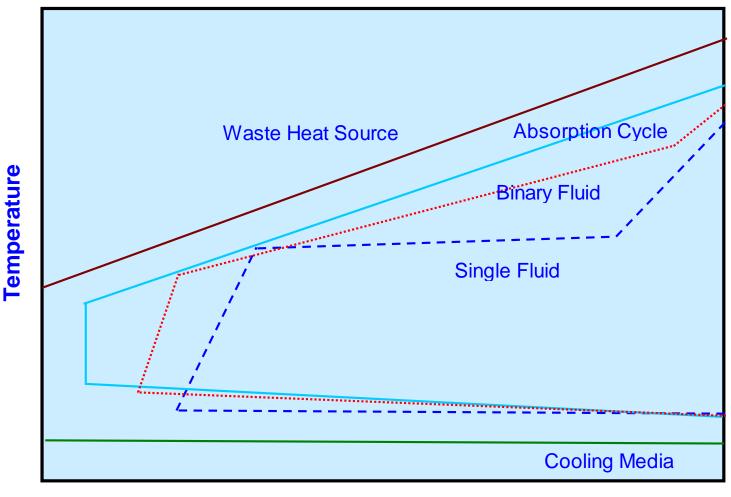
Figure of Merit

- $\mathbf{Z}\mathbf{T} = (\alpha^2 \, \sigma / \lambda \,) \, \mathbf{T}$
- α = the Seeback coefficient (volt/K)
- σ = electric conductivity (amp/volt m)
- $\lambda =$ thermal conductivity (w/m K)

Thermal Efficiency

$$\eta_{c} = \left[\frac{T_{h} - T_{c}}{T_{h}}\right] \left[\frac{\left(1 + Z^{*}\overline{T}\right)^{1/2} - 1}{\left(1 + Z^{*}\overline{T}\right)^{1/2} + 1}\right]$$

Combined Cycle


- An integrated combined cycle with advantageous features of two different cycles can be more economical than individual cycles
- Combined power and refrigeration can significantly improve the overall economics
- For an example: SCO2 and ammonia/water or organic cycle

Advantages:

- Cycle configuration
- Cost-effective interfacing with heat source
- Dry cooling
- Mitigating material issue
- Refrigeration

Technology Merits

Conversion Efficiency and Effective Utilization of Waste Heat

Conversion Efficiency and Effective Utilization of Waste Heat

Understanding Cycle Efficiency – 1st Law of Thermodynamics

Commercial Power Plants

 $\eta_c = \frac{\text{Work}_{\text{Net}}}{\text{Heat Source}}$ $\eta_c = \frac{\text{Work}_{\text{Net}}}{\text{Heat Content of Primary Soure}}$

Commonly thermal efficiency is based on recovered waste heat

$$\eta_{WH} = \frac{\text{Work}_{\text{Net}}}{\text{Heat Recovered}}$$

Thermal efficiency should be based on total recoverable waste heat

 $\eta_{WH} = \frac{\text{Work}_{\text{Net}}}{\text{Total Recoverable Heat}}$

Conversion Efficiency and Effective Utilization of Waste Heat

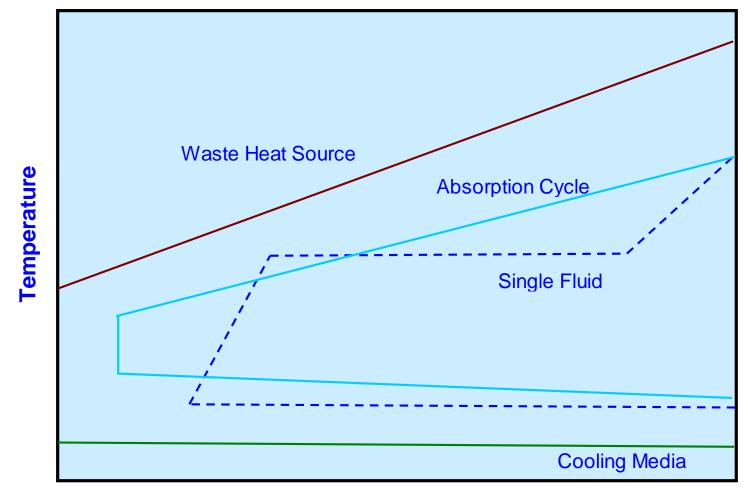
Understanding Cycle Efficiency – 2nd Law of Thermodynamics

Carnot Efficiency

$$\eta_c = \frac{\text{Work}_{\text{Net}}}{\text{Heat Source}} \qquad \eta_c = \frac{T_1 - T_2}{T_1}$$

Cornot Efficiency for Waste heat to Power

$$\eta_{\scriptscriptstyle WH} = \frac{T_{\scriptscriptstyle HeatSource} - T_{\scriptscriptstyle {\rm Re\,jection}}}{T_{\scriptscriptstyle HeatSource}}$$


Thermal efficiency should be based on total recoverable waste heat

$$\eta_{WH} = \frac{\text{Cycle Efficiency Based on Heat Recoverd}}{\text{Carnot Efficiency}}$$

Conversion Efficiency and Effective Utilization of Waste Heat

Impact of Heat Transfer Performance on Cycle Efficiency

Heat Transfer Equipment

- Waste heat source to the cycle
 - Corrosion and material considerations
 - Fouling: severity, mitigation, monitoring, cleaning
- Internal heat transfer equipment
 - Numbers and complexity
 - Design constraints and impact on cycle performance
- Heat rejection exchanger
 - Availability of cooling water or make-up water for evaporative coolers/condenser
 - Dry cooling

System integration and interfacing with industrial processes

- Interfacing of waste heat source to the cycle: space, accessibility, interfacing piping, impact on the process unit, need for a closed loop to transfer waste heat to power cycle
- Heat rejection: Integrated with the plant cooling system or independent system, availability of make-up water or dry cooling
- Power system integration and controls
- Maintenance requirements that would impact system integration
- Availability of Space for the Power System

System reliability

- Validated performance of individual components
- Validated performance of the prototype power system
- Dynamic performance of the power system that may impact industrial processes
- Impact of fouling of waste heat recovery heat transfer equipment on the system performance
- Inherent safety measures for ammonia and hydrocarbon systems

- Cost of electricity (COE): present and projected COE over the life of the waste heat to power system
- Combined power and refrigeration: value of refrigeration on energy efficiency as well as improved productivity
- Productivity improvements
- Environmental benefits

- Step 1: Determine incentives: Just COE or end-use benefits (refrigeration, operating rotating equipment, expanding capacity)
- Step 2: Characterize the waste heat source and evaluate technical issues of interfacing with the power system
- Step 3: Use technology merit criteria to screen different power cycles, including combined cycles, and down select to two (may be three) options
- Step 4: Perform a conceptual design to identify major technical issues, and possibly down select to one option
- Step 5: Preliminary design with planning-stage cost estimates based on budgetary quotes of components and subsystems
- Step 6: Decision to go forward with the installation of the waste heat to power system

Perspectives Waste heat – a hidden source of energy

- Significant loss of thermal energy from furnace/fired heater/boiler stack gases and calciners & driers
- Significant low-level (150F to 250F) energy is lost to cooling towers in the form of latent heat from overhead condensers in distillation
- Low pressure steam a major source of waste heat
- Lack of incentives, such as GHG emission credits
- Lack of design/economic tools to evaluate effective utilization of recovered process waste heat in *High-Value* applications – power, refrigeration, heat pumping
- Process heat recovery must be applied to existing plants, with uncertain costs of retrofitting
- Major technical barriers of fouling and corrosion of waste heat sources
 - Scarcity of fresh water in some regions for heat rejection