

Where Does Waste Heat to Power Fit? DOE Perspective

September 26, 2007

Merrill Smith R&D Division

Office of Electricity Delivery & Energy Reliability U.S. Department of Energy – 1000 Independence Ave., SW Washington, DC 20585

- Office of Electricity
- Office of Energy Efficiency and Renewable Energy
- National Themes

Renewable and Distributed Systems Integration

Increasing Levels of Integration

Past Goals

Equipment into Package CHP System Package CHP System Into Building Building-Integrated CHP into Community

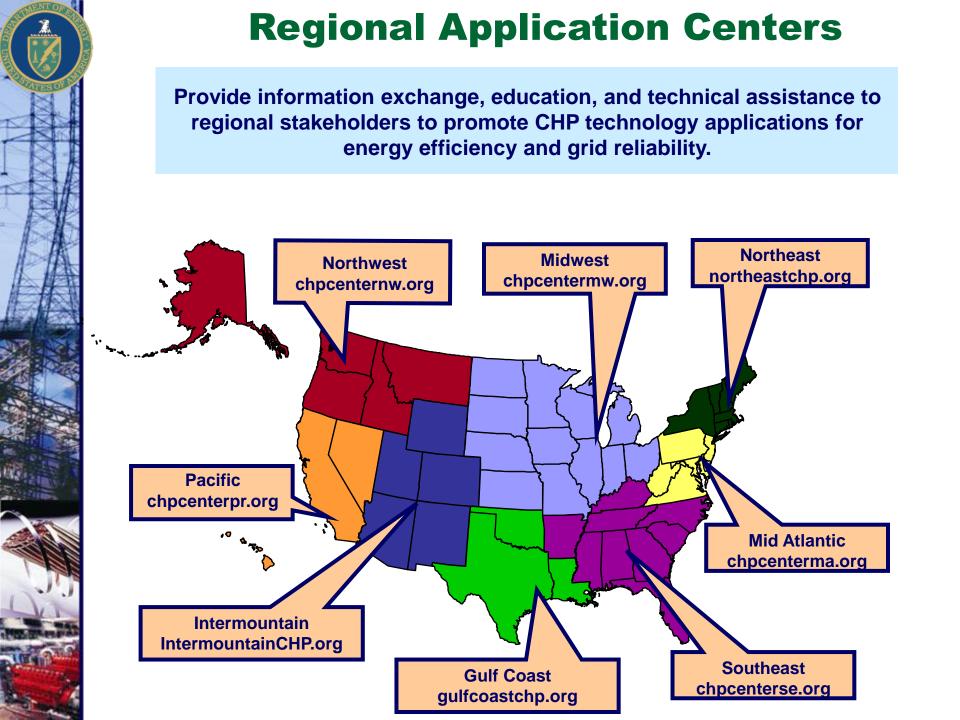
Present Goals

Renewable and Distributed Systems Integration

- Involves development of advanced
 operational controls for greater
 interoperability and the seamless
 integration of distributed systems
 (generation and storage) with electric
 grid planning and operations
- Includes research, development, field testing, and demonstration of distributed systems for demand response and ancillary services
- Provides energy solutions for utilities,
 customers, and local energy systems
 such as district energy, power parks,
 and microgrids

Benefits

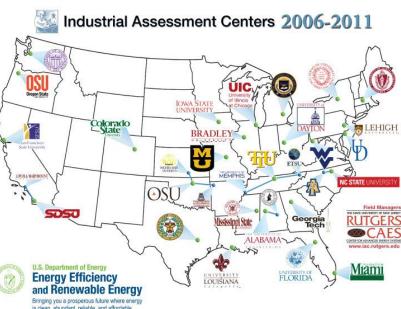
- Increases grid reliability
- Addresses vulnerability of critical infrastructure
- Helps manage peak loads and defers T&D investment
- Lowers emissions and utilizes fuel resources more efficiently
- Helps customers manage energy costs



First Commenced uses of NAS before to the UK. (serving an affice Building) Context feature facts from an angeotex of Strip, NA, MI, JUK, MARK

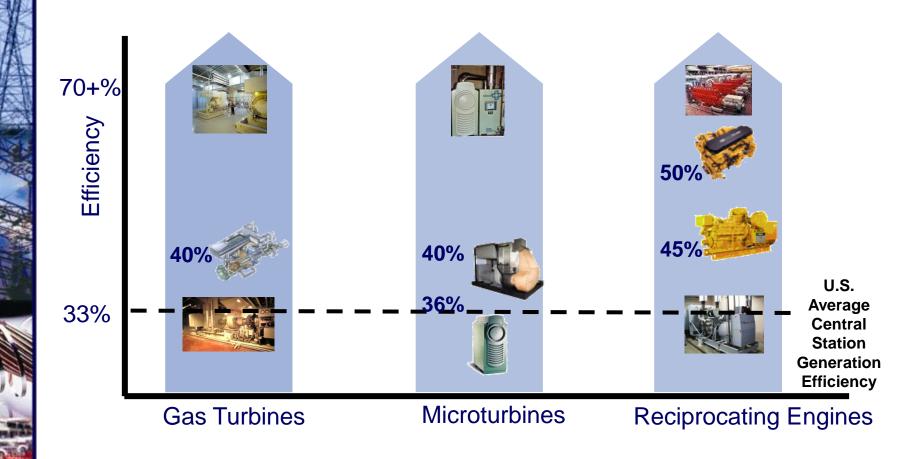
Save Energy Now Program Energy Savings Plant Assessments (ESA)

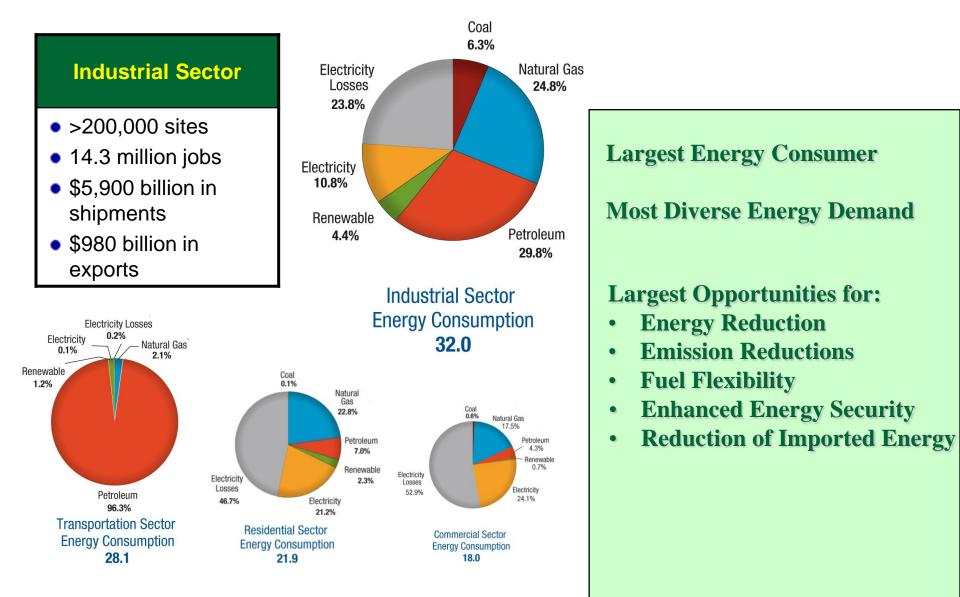
- In 2006, focused on natural gas savings in some of the nation's largest manufacturing plants (200 ESAs completed)
 - Specifically focused on process heating and steam systems
- Targeted those plants that consume 1 trillion Btus or more annually
- In 2007, 250 ESAs planned
- Extending focus beyond steam and process heating
- Assessments available to a wider range of facilities


Save Energy Now Resources

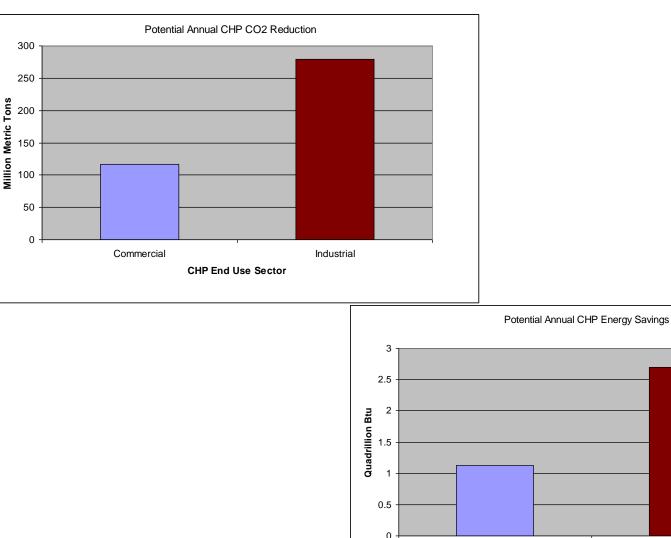
- Software Tools
 - Process Heating Assessment and Survey Tool (PHAST)
 - Steam System Assessment Tool (SSAT)
- ESA Experts
 - Trained in tools and protocols
 - Selected from pool of Qualified Specialists to conduct ESAs
- ITP Existing Resources
 - Software decision tools
 - Assessment protocols
 - Training curricula
 - Certified experts
 - Deployment partnerships

Industrial Assessment Centers


- Engineering faculty and students at 26 university engineering schools
- Assessment teams include faculty and students
- Provide free energy, waste and productivity assessments to small and mid-sized manufacturers in their regions
- Assessments entail a one-day site visit
- Integrated approach considers energy, waste, and productivity
- Good training ground for students
- Performed 113 assessments in 2006, and have identified an average of \$117,000 per plant in annual energy savings since 2001


National Themes and Opportunities Where Waste Heat to Power Technologies Fit

- Energy Efficiency
- Climate Change


Improved Generation, Heat Utilization and Integrated CHP Systems

Industrial Sector Offers Greatest Opportunity to Achieve National Energy and Emissions Goals

Greenhouse Gas and Energy Savings Reduction (Technical) Potential

Adapted from Analyses and Data from ORNL, DOE, EPA, EEA, RDC, and Discovery Insights

Commercial

CHP End USe Sector

Industrial

Energy Savings Opportunities Industrial Sector

Table 11-3 Opportunity Energy Savings						
Summarized by Broad Categories						
Category	Combined Savings (Trillion Btu)					
Waste Heat and Energy Recovery (Opportunities 1,4,10,16-19)	1831					
Improvements to Boilers, Fired Systems, Process Heaters and Cooling (Opportunities 3,8,13,20)	907					
Energy System Integration and Best Practices (Opportunities 5- 7,9,14-15)	1438					
Energy Source Flexibility and Combined Heat and Power (Opportunities 2, 11)	828					
Sensors, Controls, Automation (Opportunity 12)	191					
Total	5195					

Energy Use, Loss and Opportunities Analysis: U.S. Manufacturing and Mining (December 2004)

Top Twenty Opportunities Energy Loss Reduction and Recovery in Industrial Energy Systems Technology Roadmap (Nov 2004)

A list of top opportunities was developed based on inputs obtained at the Energy Loss and Reduction Workshop and previous studies conducted [EI 2003, EI 2004, USCHPA 2001]. These opportunities are illustrated along with the associated energy savings in Table 4.

#	Opportunity Area	Industries Analyzed	Pre-Process Energy Savings	Post-Process Energy Savings	Total Energy & Cost (million \$) Savings
	Waste heat recovery from gases and liquids in chemicals,	inductive , and jecu	Lineigy extinge	earnige	extinge
	petroleum, and forest products, including hot gas cleanup	chemicals, petroleum, forest			
1	and dehydration of liquid waste streams	products	0	828	828 (\$2210 M
		forest products, chemicals,			
2	Combined heat and power systems	food, metals, machinery	634	0	634 (\$2000 M
		chemicals, forest products,			
2	Advanced induction to the laws	petroleum, steel and food	400	0	400 (\$1000 M
3	Advanced industrial boilers	processing	400	U	400 (\$1090 M
4	Heat recovery from drying processes	chemicals, forest products, food processing	160	217	377 (\$1240 M
4	Steam best practices (improved generation, distribution	1000 processing	100	217	077 (01240 W
5	and recovery), not including advanced boilers	all manufacturing	310	0	310 (\$850 M
	Pump system optimization in electric motor-driven				
6	systems	All manufacturing	*302 (98)	0	*302 (98) (\$1370 M
		chemicals, petroleum, forest			
-	F	products, iron and steel,		4.50	000 (0000 1
7	Energy system integration Improved process heating/heat transfer systems for	food, aluminum	110	150	260 (\$860 N
	chemicals and petroleum industries (improved heat				
8	exchangers, new materials, improved heat transport)	petroleum, chemicals	121	139	260 (\$860 N
9	Energy efficient motors and improved rewind practices	all manufacturing	*258 (84)	0	*258 (84) (\$1175 N
9	Waste heat recovery from gases in metals and non-	ai manulacturing	200 (04)	0	200 (04) (01170 1
	metallic minerals manufacture (excluding calcining),				
10	including hot gas cleanup	iron and steel, cement	0	235	235 (\$1133 M
	Energy source flexibility (heat-activated power generation,				
	waste steam for mechanical drives, indirect vs direct heat	chemicals, petroleum, forest			
11	vs steam)	products, iron and steel	119	75	194 (\$1100 N
		chemicals, petroleum, forest products, iron and steel,			
12	Improved sensors, controls, automation, robotics	food, cement, aluminum	39	152	191 (\$630 N
	Improved process heating/heat transfer for metals	lood, content, alannan		102	101 (\$000 1
	melting, heating, annealing (cascade heating, batch to	iron and steel, metal casting,			
13	continuous, better heat channeling, modular systems)	aluminum	63	127	190 (\$915 N
	Compressed air system optimization in motor-driven		*****	_	*****
14	systems	all manufacturing	*163 (53)	0	*163 (53) (\$740 M
15	Optimized materials processing (grinding, mixing, crushing)	all manufacturing	*145 (47)	0	*145 (47) (\$660 N
16	Energy recovery from byproduct gases	petroleum, iron and steel	0	132	132 (\$750 N
10	Energy recovery from byproduct gases Energy export and co-location (fuels from pulp mills,	petroleum, iron and steel	0	132	102 (9/50 N
17	forest biorefineries, co-location of energy sources/sinks)	forest products	0	105	105 (\$580 N
18	Waste heat recovery from calcining (not flue gases)	cement, forest products	11	63	74 (\$159 N
19	Heat recovery from metal quenching/cooling processes	iron and steel	0	57	57 (\$275 N
19	near recovery from meral quenching/cooling processes	Food processing, chemicals,	0	5/	0/ (⊉2/5 N
		petroleum and forest			
20	Advanced process cooling and refrigeration	products	*57 (15)	0	*47 (15) (\$212 N
_	ALS	• •	2889	2280	5162 (\$18,357 M

For More Information...

Office of Electricity Delivery and Energy Reliability

www.oe.energy.gov

Office of Energy Efficiency and Renewable Energy

www.eere.energy.gov

OE Home

About Us

Documents & Publications

Energy Policy Act

Events

Infrastructure Security & Energy Restoration

News & Information

Permitting, Siting & Analysis

Research & Development

Site Map

Contact Us

QUICK REFERENCE

Kevin Kolevar speaks at Entergy Louisiana's Operations Center

Office of Electricity Delivery and Energy Reliability

"DEPARTMENT OF ENERGY OFFICIAL TOUTS BUSH ADMINISTRATION'S EFFORTS TO MODERNIZE OUR NATION'S ELECTRIC GRID"

The U.S. Department of Energy's (DOE) newly confirmed Assistant Secretary for the Office of Electricity Delivery and Energy Reliability Kevin M. Kolevar today highlighted the Bush Administration's efforts to increase the use of new power delivery system equipment in New Orleans, as well as DOE's recent announcement to invest up to \$51.8 million to modernize and secure our nation's electric grid.

You are here: DOE Home > OE Home

NATIONAL CORRIDORS

U.S. Department of Energy (DOE) Secretary Samuel W. Bodman announced the issuance of two draft National Interest Electric Transmission Corridor (National Corridor) designations. To view the press release. <u>Go></u>

National Action Plan for Energy Efficiency

Utility sector leaders make firm commitment to energy efficiency through a National Action Plan for Energy Efficiency, facilitated by DOE and EPA. For more information. <u>Go></u>

EMERGENCY PETITIONS & COMPLAINTS

See the latest posting regarding Emergency Petitions and Complaints; D. C. Public Service Commission. <u>Go></u>